Indian Statistical Institute, Bangalore M. Math.

First Year, Second Semester Functional Analysis

Final Examination (Back-paper)	Date: 04 June 2024
Maximum marks: 100	Time: $10:00$ AM $-1:00$ PM (3 hours)
	Instructor: Chaitanya G K

1. Let X be a normed linear space.

- (a) Find all subspaces of X which are contained in some ball $B_r(x)$ of X.
- (b) Find all subspaces of X which contains some ball $B_s(y)$ of X.

[6+6]

- 2. Prove that a normed linear space X is Banach if and only if every absolutely convergent series in X is convergent. [13]
- 3. State and prove Riesz lemma. [10]
- 4. State and prove Open Mapping Theorem. [15]
- 5. Let $X = C^{1}[0,1]$ be the space of continuously differentiable functions on [0,1] and Y = C[0,1]. The norm on X and Y is the sup norm. Consider the map $T: X \to Y$ defined by

$$Tf(t) = f'(t), \quad t \in [0, 1].$$

Show that the graph of T is closed but T is not bounded. Does this contradict the closed graph theorem? [13]

- 6. Show that every separable infinite-dimensional Hilbert space is isomorphic to l^2 . [15]
- 7. Let (c_n) be a sequence of complex numbers. Define an operator D on l^2 by

$$Dx = (c_1x_1, c_2x_2, \ldots), \quad \forall x = (x_1, x_2, \ldots) \in l^2.$$

Prove that D is compact if and only if $\lim_{n \to \infty} c_n = 0.$ [10]

- 8. Let X be a Banach space, and $S, T \in \mathcal{B}(X)$. Show that if T is compact, the spectrum of S and S + T are same except for eigenvalues. [12]
- 9. Let $\tau_{\parallel \cdot \parallel}$ and τ_w denote the norm and the weak topologies on a normed linear space X, respectively. If X is infinite dimensional, show that $\tau_w \neq \tau_{\parallel \cdot \parallel}$. [15]
